If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80x+550=0
a = 1; b = -80; c = +550;
Δ = b2-4ac
Δ = -802-4·1·550
Δ = 4200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4200}=\sqrt{100*42}=\sqrt{100}*\sqrt{42}=10\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-10\sqrt{42}}{2*1}=\frac{80-10\sqrt{42}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+10\sqrt{42}}{2*1}=\frac{80+10\sqrt{42}}{2} $
| x^2-80+550=0 | | /9/3=15/x | | 81/7t=81 | | 140=(2x+4)+(2x+4)=180 | | 4(6x+6)=36x | | 110=(19x+4)+(8x-2)=180 | | 7x2-19x-6=0 | | 110=(19x+4)+(8x-2) | | 4x-6+x=9 | | (5x2+20x+100)=0 | | 1.5(3.25x+7.5)=12.5 | | 3y+4=1-1y-6 | | 5(r=1)+2=6(r+2)-12 | | 2x+-39=5(x+2x) | | 3y+4=1-y-6 | | X^2+12x+900=755 | | 16y-14=2(8y-7) | | 6(d+2)=5(d-2) | | 4(y-1)=4y+5-3(-3y-1 | | 5x2-4=-24 | | 10s(5)=20 | | 2y+3y=4 | | x5=18x3-81x | | 51=(x+89)+(x+59)=180 | | 2x=2/10 | | 2x²-4x+7=0 | | 11-3c=8c | | 7-4y=-21 | | 7J+15=10j | | 7+0.50p=5+0.60p | | z-+2=2z | | 5x−7=2(x+10) |